185-0822-7772
四川海辉千讯网络科技有限公司
地址:成都双流区东升街道藏卫路南二段699号附6号1层
电话:185-0822-7772(王)  
189-8000-5257(佘)
邮箱:ibfs@qq.com
成都弱电公司讯:
大数据背景下,成都视频监控遭遇几大困境,飞速增长的成都视频监控数据使得传统成都视频监控体系架构、数据的经管方式、数据分析应用等面临新的困境。云计算、大数据技术的发展为安防行业发展带来前所未有的突破,但仍面临许多困境与挑战。
安防需求不断增长大数据发展面临挑战
一、数据量的急剧扩大和IT投资之间的矛盾
按照IT产业的法则:在满足客户需求的前提之下,往往技术成本越低,其生命力往往越强。由于数据量的急速扩大,以及随之而来的大规模计算的需求越来越多,一味采用高配硬件,使得硬件投资成为客户不可承受之重,客户越来越希望在满足需求的前提下,用中低端的硬件来替换高配硬件。
二、海量数据和有效数据之间的矛盾
摄像头24小时不间断工作,如实记录镜头覆盖范围发生的一切,仅仅记录信息是不够的,因为对于客户来讲可能大部分信息是无效,有效信息可能只分布在一个较短的时间段内,按照数学统计的说法,信息是呈现幂律分布的,也称之为信息的密度,往往越高密度的信息对客户价值越大。
相较于另外行业,安防非结构化的数据存储压力不断增大,一方面源于视频、图片等非结构化数据本身容量,另一方面源于安防数据规模的不断扩大,安防大数据存储对系统设备提出了更高挑战,如何在满足需求的前提下,删除重复数据、降低存储硬件成本投资成为海量数据存储的一个难题
三、资源利用和效率之间的矛盾,串行计算和并行计算的矛盾
成都视频监控业务网络化、大联网后,网络内的设备越来越多,利用闲置的计算资源,实现资源的最大化利用,关乎运算的效率。在成都视频监控领域,往往视频分析的效率决定价值,更低的延迟、更准确的分析往往是平安城市这类客户的普遍需求。随着数据量的增加,哪怕对TB级别的数据进行对视频内容的数据分析和检索,采用串行计算的模式都可能需要花费数小时的计算,已远远不能胜任时效性的需求。视频的分析和检索,不能依赖于传统的手段,巨量数据的效率优化,并行计算是视频智能分析的唯一出路。
四、数据共享
大数据需要通过快速的采集、发现和分析,从大量化、多类别的数据中提取价值。安防大数据时代最显着的特征就是海量和非结构化数据共享,用以提高数据处理能力。而海量数据存储在分歧系统、分歧区域、分歧节点、分歧设备中,这给数据的传输和共享带来极大的挑战。